Convolutional Virtual Electric Field for Image Segmentation Using Active Contours
نویسندگان
چکیده
Gradient vector flow (GVF) is an effective external force for active contours; however, it suffers from heavy computation load. The virtual electric field (VEF) model, which can be implemented in real time using fast Fourier transform (FFT), has been proposed later as a remedy for the GVF model. In this work, we present an extension of the VEF model, which is referred to as CONvolutional Virtual Electric Field, CONVEF for short. This proposed CONVEF model takes the VEF model as a convolution operation and employs a modified distance in the convolution kernel. The CONVEF model is also closely related to the vector field convolution (VFC) model. Compared with the GVF, VEF and VFC models, the CONVEF model possesses not only some desirable properties of these models, such as enlarged capture range, u-shape concavity convergence, subject contour convergence and initialization insensitivity, but also some other interesting properties such as G-shape concavity convergence, neighboring objects separation, and noise suppression and simultaneously weak edge preserving. Meanwhile, the CONVEF model can also be implemented in real-time by using FFT. Experimental results illustrate these advantages of the CONVEF model on both synthetic and natural images.
منابع مشابه
Anisotropic virtual electric field for active contours
0167-8655/$ see front matter 2008 Elsevier B.V. A doi:10.1016/j.patrec.2008.04.009 * Corresponding author. Tel.: +1 718 982 3178; fax E-mail address: [email protected] (S. Zhan A novel external force called anisotropic virtual electric field (AVEF) is proposed for active contours by incorporating the geometric information of the image edge map into a virtual electric field (VEF) model. T...
متن کاملA Hybrid 3D Colon Segmentation Method Using Modified Geometric Deformable Models
Introduction: Nowadays virtual colonoscopy has become a reliable and efficient method of detecting primary stages of colon cancer such as polyp detection. One of the most important and crucial stages of virtual colonoscopy is colon segmentation because an incorrect segmentation may lead to a misdiagnosis. Materials and Methods: In this work, a hybrid method based on Geometric Deformable Models...
متن کاملTubule segmentation of fluorescence microscopy images based on convolutional neural networks with inhomogeneity correction
Fluorescence microscopy has become a widely used tool for studying various biological structures of in vivo tissue or cells. However, quantitative analysis of these biological structures remains a challenge due to their complexity which is exacerbated by distortions caused by lens aberrations and light scattering. Moreover, manual quantification of such image volumes is an intractable and error...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملRobust Image Segmentation using Active Contours : Level Set Approaches
Lee, Cheolha Pedro. Robust Image Segmentation using Active Contours: Level Set Approaches. (Under the direction of Dr. Wesley Snyder). Image segmentation is a fundamental task in image analysis responsible for partitioning an image into multiple sub-regions based on a desired feature. Active contours have been widely used as attractive image segmentation methods because they always produce sub-...
متن کامل